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Abstract. The Green function for M oscillotor with antiwmmuting degrees of freedom is 
obtained by extending two operator methods to the case of a Grassmann algebra: the dynamical- 
group approach md the Dira-Schwinger method. In both methods. we verify that the canonical 
anticommutation relations are responsible for the fact that this system has a negative-dimensional 
behaviour. 

1. Introduction 

Grassmann variables are nowadays of widespread use in theoretical physics, for example 
in the description of fermions by the functional methods of quantum field theory, in 
supersymmetry, in the Bechi-RouetStora-Tyutin (BRST) theory of classical- and quantum- 
constrained systems, to mention just a few [l]. In order to explore the role of anticommuting 
coordinates in the supersymmetric version of the Poincark group, Finkelstein and Villasante 
121 introduced a Grassmann generalization of ordinary quantum mechanics, where the 
degrees of freedom are considered to be elements of a Grassmann algebra. As an application, 
they studied an N-dimensional Grassmann oscillator (GO), that, in contrast to the usual fist- 
order Grassmann models of supersymmetry, is of second order in time derivatives. This 
system is related to the usual harmonic oscillator (HO) by the change N -+ -N as pointed 
out by Dunne and Halliday [3] using the path-integral representation for the Green function 
and the properties of the Gaussian Berezin integral. This fact allows one to understand 
the Grassmann coordinates as negative-dimensional degrees of freedom and use them to 
explore the realm of the negative-dimensional groups [4]. In [5], it was found that at finite 
temperature, although described by Grassmann numbers, the negative-dimensional oscillator 
displays a bosonic behaviour, due to a hidden BRST symmetry in the classical mechanics of 
the usual HO. 

I n  this paper, we follow [Z] and obtain the Green function for the Go by extending 
two operator methods of ordinary quantum mechanics to anticommuting variables: the 
dynamical-group method and the Dirac-Schwinger method. In the following sections, we 
ineoduce the notation and explain both methods by explicit calculation of the Green function. 
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2. The Grassmann oscillator 

The Grassmann version of ordinary quantum mechanics, studied by Finkelstein and 
Villasante 121, is described by the coordinate and conjugate momentum j .  operators 
(a = I ,  . . . , N) that obey the canonical anticommutation relations (h = I )  

S J Rabello et a1 

[ia~Bbl+=-i$b [ 8 o s i b l + = O  [aat$bl+=0. (1) 

They considered an oscillator with the Hamiltonian operator given by (summation 
convention assumed) 

6 = i(-iacs’ib t w2qucobqb) (2) 

where C is a Hermitian antisymmetric matrix. As an antisymmetric matrix has an inverse 
only for even dimensions, we are restricted to even values of N .  

To describe the Green function for the Schrodinger equation with the above 8, 
we introduce a basis of 4. eigenvectors 14) where the eigenvalues qo are elements of 
a Grassmann algebra and the normalization is of the Berezin delta-function type [I]: 
(4’14) = 6(q’ - 4). With the above definitions, we have for the Green function 

(4‘. t lq ,O)  = ( q W A r l q ) .  (3) 

Among the several ways of obtaining the above matrix element, in the following sections, 
we focus on two operator methods: the first in the Schradinger picture and the second in 
the Heisenberg picture. 

3. The dynamical-group method 

In the Schrodinger picture, we can use the coordinate representation 
(hereafter, all derivatives act by the left), so that (3) now reads 

. a  = qn and j. = -I- 
aq. 

(4) 

To find the action of exp(-i8t) on the Berezin delta function, we make use of the fact that 
the GO Hamiltonian displays an SO(2, 1) dynamical or non-invariance group [6]. This can 
be seen if we decompose f? as a linear combination of the self-conjugate operators 

(5 ) 

(qlle-’”lq) = e-”tg(q - 4’). 

TI = -i zP0 ,. C-’Bb ob T3 = a&c& 
which obey the commutation relation 

[z,7j]- = - i a ( 8 . $ - B . $ ) z z - i T z  (6) 
and also 

[ T I ,  Tzl- = -i7j [T3, Tzl- = iT3. (7) 

The above commutation relations generate the SO(2. I )  Lie algebra. A more familiar form 
for this algebra is achieved by introducing the ri operators 
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that obey 

[ri, r j ] -  = i&,jkgk'r, (9) 

g'J = diag(1, 1, -1). 

with the SO(2. 1)  metric g'J given by 

(10) 

The fact that the Hamiltonian is a linear combination of the generators of the SO(2. 1) 
algebra does not means that we have a SO(2.1) symmetry but indicates that we can use 
the representations of the SO(2, 1) group to obtain the spectrum and eigenstates for the 
problem at hand i6].  In the following, we take an alternative route and use an SO(2. 1) 
Baker-Campbell-Hausdorff (BCH) formula to disentangle the expression for the propagator 
of the Schrodinger equation. It is interesting to note that the dynamical algebra of the 
N-dimensional GO is the same as for the N-dimensional oscillator [7] .  To better understand 
this point, let us use the canonical anticommutation relations (1) in the T2 generator 

We can see that T, has a c-number term i$ that can be identified as a central extension 
to the Poisson-Lie algebra due to the quantum conditions (1). The point i s  that this term 
happens to be proportional to the dimension N and has the opposite sign to the similar 
term that appears in the study of the HO dynamical group [7].  This fact give us a hint that 
the quantities obtained for the Go can be related to the equivalent ones for the HO by a 
shift N + -N. It should be pointed out that besides the SO(2, 1) spectrum generating 
algebra, the Go has an SU(-N) degeneracy group and also an obvious Sp(N) - SO(-N)  
geometrical invariance [4].  We now use the above SO(2, 1) Lie algebra to obtain the Green 
function for the GO. Using the generators c, we have that 

e-'H'G(q - 4') = exp[-it(p + 2w2T,)lS(q - 4'). (12) 

To find (q', tlq, 0), we have to disentangle the above expression in a product of exponential 
factors of the E .  For this purpose, we need a BCH formula for the SO(2, 1)  generators. A 
way of obtaining this formula is to write a faithful representation for the T, in terms of the 
Pauli matrices U; and expand (12) in a Taylor series 

we have that 

(15) x = 20tan(wt) y = 2ln(cos(wt)) z = - tan(wt). 

With the above BCH formula, we now verify the action of e-iHf on S(q-4'). It is convenient 
to introduce a Berezin integral representation for the delta function 

1 
w 
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where the p u  are also elements of a Grassmann algebra. 

function is given by 

S J Rabello et a1 

It is now easy to verify that the action of each exponential factor in (14) on the delta 

e-iYT'f(q) = eN~/4f(e-~/2q) (18) 
where f (4) is any function of 4.. With these results, the propagator reads 

If we now insert the values of x ,  y and i and appeal to the following Berezin integral 
identity [ I ] :  

we get 

where 

Thus, the propagator for the Go has the same phase as the HO, but with an opposite signal 
for N in the amplitude. This sign reversal of N can be regarded as a continuation N -+ -N 
in the result for the HO. In the next section, we get (q', tIq,O) working in the Heisenberg 
picture. 

4. The DiracSchwinger method 

To obtain the Green function for the Schrodinger equation. Dirac [8] wrote (3) in the 
following way: 

( q f ,  0) = eiWq'.q:O (23) 

where W(q' .  q;  f) is a complex function of the end-point coordinates and time. It is easy 
to verify from (1) and (3) that this function is determined by the following relations: 
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These equations surely have a flavour of the classical Hamilton-Jacobi method (HJ), so Dirac 
imagined W(q' ,  q;  I )  to be a matrix element between position eigenstates of a time-ordered 
operator G(q(t), i ( 0 ) )  that could be termed the 'quantum action operator', satisfying an 
operator version of the HJ equation. To solve for W ( $ ( f ) , i ( O ) ) ,  one must proceed as in the 
classical HI method, replacing j ( r )  by the derivative of J@(i(t) ,  i ( 0 ) )  with respect to i ( t )  
and so on. integrating the equations with the non-commutativity of the variables in mind 
191. 

In his classicd paper on the effective interaction of quantum fields with a classical 
background, Schwinger [lo] obtained an expression for the effective action in terms of 
the Green function of a non-relativistic quantum-mechanical problem. He followed Dirac 
to solve this problem, but instead of relying on the HJ method he noticed that the above 
equations relate the transition amplitude to the solution of the Heisenberg equations for t ( t )  
and ; ( t )  

If we solve for j ( t )  in terms of i ( t )  and i ( 0 )  and insert this, in a time-ordered fashion. 
into (24)-(26), we are left with a set of first-order equations to integrate. For the GO, the 
equations in (28) are 

with solutions 

(30) 

(31) 

As fi is time-independent, f i ( i ( t ) ,  j ( t ) )  = H($(O),  j ( O ) ) ,  only equation (30) is really 
needed to put fi in a time-ordered form. Solving (30) for t (0 )  and inserting it into (2) 

1 
i , ( t )  = &(O)cos(wt) + ; c , - d j b ( O )  sin(wt) 

j.(t) = wib(o)cb, sin(@?) + ~.(O)cos(@t). 

Note that this is the negative of the corresponding commutator for the N-dimensional HO, 
a fact that is due to the canonical anticommutation relations (1) as we verified earlier in the 
realization of the SO(2,l) generator T2. 

Now, if we define the expectation value 

(e) = (q ' ,  t i f i ( i ( t ) ,  ci(o))ls, o)/(s'. tlq, 0)  (34) 
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we have that 

(H) = - csc2(wr)C,b[(q:q; + qoqb) - ?&h cos(wt)]+ i l c o t ( o t ) .  

With the above result we are now in position to integrate (24) 

S J Rabello et a1 

(35) 
I w= UN 

2 

N 
IV(q'. q:  r) = S(q', q ;  t) - iT Insin(ot) + @(4', q )  

where S(q, q'; t )  is given by (22) and Q(q',q) is a time-independent function. In order to 
determine @, we substitute I V  in (25) and (26) to get 

By using the boundary condition (27). we have 

So, the final answer for Dirac's 'quantum action' is given by 

As we can see, the real part of \V is the classical action whilst its imaginary part is the 
pre-exponential factor as expected, since our system is quadratic [9], even if in a Grassmann 
sense. 

5. Conclusions 

In this paper we have explored the possibility of a Grassmann realization of non-relativistic 
quantum mechanics, computing the GO Green function by two different operator methods. 
In the first, we explored the fact that the Hamiltonian is a sum of SO(2, 1) Lie algebra 
generators, allowing one to use a BCH formula to disentangle the evolution operator as a 
product of exponential factors, each one with a simple realization in the configuration space 
and so avoiding the need for solving differential equations. Next, we turned to a method by 
Dirac and Schwinger that relates the solution of the Heisenberg equations for t ( t )  and $(t) 
to the transition amplitude by a simple integration of first-order differential equations. In 
both methods, we observed that the canonical anticommutation relations are responsible for 
the interpretation of the Grassmann coordinates as negative-dimensional degrees of freedom. 
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